ECG Emergency Decision Making in ACS

Dr.Mohamed Seleem, MD
Head of the CCU
National Heart Institute

Classification of ACS

Pathophysiology

Acute MI

- ✓Platelet cascade
- √Thrombus formation
- √<u>Vasospasm</u>

Complete occlusion

Vulnerable Plaque

Plaque rupture (55-80%)

Exertion
BP, HR
Vasoconstriction

Spontaneous lysis

Healing plaque

Incomplete occlusion
Distal embolization

Unstable angina
Non-Q MI

Platelet cascade

TIMI risk score in NSTEMI

- Age > 65 yr
- CAD risk > 3
- Stenosis > 50%
- Chest pain > 2 times in 24 hr
- ASA within 1 wk
- EKG; ST deviation > 0.5 mm 6.
- Positive Troponin-T

**SCORE > 4 -

HIGH RISK

•Glp 2b3a Rx.

Am Heart J 2012; 143: 966-70

early revasculaization

J Invasive Cardiol. 2006 Dec;18(12):617-39.

TIMI risk score in NSTEMI

TIMI risk score in STEMI

1. Historical	Score
 Age, y ≥ 75 	3
Age, 65-74	2
Hx of DM, HT or angina	1
2. Examination	
■ SBP < 100 mmHg	3
HR > 100/min	2
Killip class II-IV	2
Weight < 67 kg	1
3. Presentation	
Ant ST elevation or LBBB	1
Time to reperfusion > 4 hr	1

Uses of the Electrocardiogram

Establish the diagnosis

Determination of cardiovascular risk

 Help in choice and monitoring response to treatment

Limitations of the ECG

- Adult chest pain with absolutely normal ECG:
 - 20% of ER presentation
 - ~ 10% of these patients have an ACS
- A source of error is pseudonormalization of baseline ST-T changes

Limitations of the ECG

- Non-diagnostic ST-T Wave changes:
 - Less than 1 mm STD or STE
 - Blunted or flattened T waves
 - ~ 37% of these patients have an ACS

ECG Changes with ACS

Ways ECG can change in ACS include:

ST elevation & depression

T-waves changes

Appearance of pathologic **Q-waves**

peaked

inverted

ECG of UA/NSTEMI

 ST-segment depression is the primary ECG markers of UA/NSTEMI

 Also the ECG may be normal or show nondiagnostic changes

ECG changes of STEMI

- A. Normal ECG prior to MI (or with MI)
- **B. Ischemia** → in peaked T-waves
- **C. Infarction** → in ST elevation
- D. Infarction and Necrosis --> pathologic
 Q-waves with ST elevation
- E. Necrosis and fibrosis → Pathologic Q waves, with T-wave inversion

Diagnosis of MI

Elevation of the ST segment >1 small box in 2 leads is consistent with acute MI

ST Elevation

•The ST segment elevation may fuse with the QRS and T wave - yielding a "Tombstone" complex.

Another way to diagnose an acute MI

New LBBB, concordant leads, discordant leads, midprecordial leads

Case presentation

• A 60-year-old man with a history HTN presents to ED with a 1-day history of chest pain. He describes it as a sharp pain. The pain worsens when he is lying down, but it is relieved by bending forward.

The physical examination is unremarkable.

Acute pericarditis

- ST segment is elevated most leads (is elevated in both the inferior and aVL leads and does not behave reciprocally).
- The PR segment is depressed in most of the leads
- The T wave not tall

This tracing highly suggestive of?

Early repolarization pattern

- The ST segment is elevated in the midprecordial leads
- There is a notch in the J point.
- The T waves are tall.

Pearl for Practice

Infarction → ST elevation, But ST elevation may represents other non-ischemic conditions.

ECG Leads and Ventricular Region

As regard ECG, some leads get a good view of the heart:

- > V1-V4 = anterior
- ightharpoonup V1-V2 = anteroseptal
- V3-V4 = anteroapical
- V1-V6 = anterolateral (Extensive anterior)
- \triangleright I, aVL&V5-V6 = lateral
- ►II, III & aVF = Inferior

Anterior Wall MI

Anteroseptal MI

Anterolateral MI

Inferior Wall MI

What is the diagnosis?

Normal ECG

Normal neonatal ECG Electrocardiogram from a healthy neonate resembles right ventricular hypertrophy in adults (tall right precordial R waves with right axis deviation). Right ventricular preponderance in neonates is a physiologic finding related to fetal circulatory dynamics; resting sinus tachycardia is expected. The very narrow QRS (only about 0.05 sec) is a major clue in differentiating this pattern from a pathologic one in adults. Courtesy of Ary Goldberger, MD.

Pearl for Practice

ECG <u>must be</u> interpreted in the context of the clinical history and physical exam

Treatment of ACS

Long term medical therapy (antiplatelet, betablocker, ACEI, Statin)

THANK YOU