

A Comprehensive Approach: Acute Severe Bronchial Asthma Requiring NIV and Mechanical Ventilation

Presented by:
Nada Saeed
Lecturer of Anesthesiology and Intensive care
Ain Shams Univerity

Objectives

Present

- Present a clinical case of acute severe asthma requiring mechanical ventilation.

Discuss

- Discuss key ventilation strategies in asthma management.

Compare

- Compare nebulization methods in mechanically ventilated patients.

Case Description

Patient Information:

32-year-old female with a history of asthma presents to the ED with severe shortness of breath and wheezing, unable to complete sentences.

Not improving with her inhalers.

MH: Poor adherence to inhaled corticosteroids.

Recent upper respiratory tract infection.

Symptoms progressively worsened over the last 24 hours.

What are the immediate assessments for acute severe asthma???

Initial Vitals

- HR 120 bpm, RR 30/min, BP 130/80 mmHg, SpO2 88% on room air.
- On examination: accessory muscle use, bilateral wheezing, inability to speak in full sentences,
- > ABG

What initial treatments should be started?

Initial treatment

- ➤ High-flow oxygen to maintain SpO2 > 92%.
- Continuous nebulization with salbutamol and ipratropium bromide.
- ➤IV hydrocortisone 100 mg stat.
- ➤IV Magnesium Sulphate (2gm IV over 20 minutes)
- Close monitoring of vitals and response.

Progression of Symptoms

2 Hours Later:

Patient shows no improvement despite aggressive therapy.

Persistent tachypnea (RR 33), Respiratory acidosis.

Initiating Non-Invasive Ventilation (NIV)

Indications??

Persistent respiratory distress

Fatigue??

 $PaCO_2 > 45 \text{ } mmHg$

Goal??

- * Reverse acidosis
- * Improve oxygenation
- * Reduce work of breathing

Monitoring??

- * Improvement in HACOR score,
- *ABG,
- * Clinical status.

Initiating Non-Invasive Ventilation (NIV)

NIV Parameters:

➤ Mode: BiPAP,

▶ IPAP: 12-16 cmH₂O,

▶ EPAP: 4-6 cmH₂O,

 $\gt FiO_2$: Maintain $SpO_2 \gt 92\%$.

Introduction to HACOR Score HACOR SCORE

Variables	Category (j)	Assigned points
Heart rate,	≤120	0
beats/min	≥121	1
pH	≥7.35	0
	7.30-7.34	2
	7.25-7.29	3
	<7.25	4
GCS	15	0
	13-14	2
	11-12	5
	≤10	10
PaO ₂ /FiO ₂	≥201	0
	176-200	2
	151-175	3
	126-150	4
	101-125	5
	≤100	6
Respiratory rate,	≤30	0
breaths/min	31-35	1
	36-40	2
	41-45	3
	≥46	4

1.HACOR is a potentially useful bedside tool for the prediction of NIV failure.

2. A HACOR score >5 at 1hour of NIV highlights patients with a >80% risk of NIV failure regardless of diagnosis, age, and disease severity.

NIV Failure and Decision for Intubation

Signs of NIV Failure:

- Persistent or worsening acidosis (pH < 7.30..PCO2 70).</p>
- No improvement in HACOR score.

Exhaustion

Altered mental status.

```
Blood Gas Values
      DH
                       7.270
      pCO.
 Temperature Corrected Values
      pH(T)
                       7.270
      pCO_{s}(T)
                        7.80
      pO,(T)
 Oximetry Values
                               g/dL
      ctHb
      sO.
      FCOHb
      FO, Hb
                         83.5
       FHHb
                          0.6
       FMetHb
 Acid Base Status
                         44.2
                                mmol/L
      cHCO, (P)c
                         35.9
                                mmol/L
      cHCO, (P.st)c
                         12.3
                                mmol/L
      ABEC
 Electrolyte Values
                                 mmol/L
       cNa*
                                 mmol/L
 Metabolite Values
                                 mmol/L
       cLac
Notes
            Calculated value(s)
```

Transition to Mechanical Ventilation

Preparation:

- * Preoxygenation
- * Rapid sequence induction. (with ketamine and rocuronium)

Post-intubation:

Initiated mechanical ventilation.

Ventilation Strategies

Goals:

Prevent dynamic hyperinflation

Allow permissive hypercapnia.

Initial Settings:

Mode: VCV,

LOW tidal Volume: 6-8 mL/kg – Ideal body weight,

RR: 8-12,

I:E Ratio: 1:3 or 1:4, Prolong Exp Time??

PEEP: 5 cmH₂O,

FiO₂: 100% initially.

Plateau Pressure: Keep <30 cmH₂O.

Will BED

Nebulization in Mechanical Ventilation

> Challenges??

- 1. Efficient drug delivery
- 2. Minimizing circuit disconnection.

> Methods??

- 1. MDI using spacer
- 2. Jet Nebulizer
- 3. VMN

Which type of nebulizer do you use in your practice and why?

Comparison of Nebulizers

Nebulizer type	Mechanism of action	Types	Advantages	Disadvantages
Jet [68]	Pressurized gas forms a jet passing through a tube creating a low-pressure zone (Venturi effect) that draws liquid formulation into the jet stream (Bernoulli effect)	• With a corrugated tube	• Cheap	Inefficient
		• With a collection bag	• Easy to use	• Difficult to clean
	Droplet size > 5 μm	Breath-enhanced jet nebulizers	 Effective in delivering drugs that cannot be delivered with pMDIs and DPIs 	 Need compressed gas and additional tubing
		Breath-actuated jet nebulizers	Breath-enhanced and breath-actuated options	

Jet nebulizers

Comparison of Nebulizers

Jltrasonic 70, 131] Piezoelectric crystal converts an electrical signal into high-frequency vibrations in the liquid, forming an aerosol using cavitation and capillary mechanisms

Drug output alpha vibration amplitude Particle size alpha vibration frequency

Droplet size variable, may be less than 5 µm

- Small volume (e.g. for medications)
- Large volume (e.g. for hypertonic saline used for sputum induction)
- Easy to use
- More efficient than jet nebulizers
- Shorter nebulization time (better for large volumes)

- · Large residual volume
- Unable to nebulize viscous solutions
- Degradation of heat-sensitive materials—so inappropriate for proteins
- Aerosol temperature 10–14 °C higher than that in jet nebulizer
- Large device size

www.b-h-care.com

Comparison of Nebulizers

19, 70]

librating mesh. Aerosol is produced by forcing the liquid using the micropumping action through the vibrating mesh containing funnel-shaped holes

Droplet size < 5 µm

Silent operation, portable

More expensive

 Passive (e.g. Microair NE-U22°; Omron, Bannockburn, IL, USA) Short treatment time

Minimal residual volume

Cleaning can be difficult

 Drug dose needs to be adjusted in transition from jet nebulizers

Self-contained power source - Inability to use to

aerosolize viscous

 Optimize particle size for specific drugs

· More output efficiency than other nebulizers

Two to three times higher drug deposition compared with jet nebulizers

 Aerosol temperature usually unchanged

Unchanged osmolality

Easy to use

liquids

· Inability to aerosolize drugs that crystallize on drying

Complications

Key Risks	Barotrauma,	
	Dynamic hyperinflation,	
	VAP.	
Prevention	Monitor plateau pressures,	
	Optimize expiratory time,	

Avoid circuit disconnections.

Air Trapping

ICU Management Post-Intubation

- Sedation and analgesia.
- Monitoring for barotrauma and ventilatorassociated complications.

Weaning Criteria

* Resolution of acidosis

Improved oxygenation

Stable vitals

Minimal ventilatory support.

Case Outcome

Patient extubated after 48 hours.

Transitioned to high-flow nasal oxygen and nebulization.

Discharged with follow-up plan and adherence counseling.

Key Takeaways

- 1. Early recognition and escalation in asthma management are critical.
- 2. The HACOR score aids in predicting NIV outcomes.
- 3. Individualized ventilation strategies improve outcomes.
- ***Tailored ventilation strategies minimize complications
- 4. Nebulizer selection depends on context and resource availability.
- ***Effective nebulization improves outcomes

Discussion

- A. How would you balance oxygenation and ventilation in this case?
- B. When would you consider ECMO for refractory cases?
- C. Risks of permissive hypercapnia in severe asthma?
- D. Preferred nebulization method for ventilated patients?

References

- BTS/SIGN Asthma Management Guidelines.
- ARDSNet Ventilation Protocol.
- Peer-reviewed articles on nebulization in mechanical ventilation.

