

Pulmonary Embolism in Intensive Care Unit

Ashraf Madkour, MD, Dr.med., FCCP
Department of Pulmonary Medicine,
Ain Shams University, Cairo, Egypt.

Agenda

- Frequency of pulmonary embolism in ICUs
- Health care costs of VTE
- Pathophysiology of Pulmonary Embolism
- Risk factors for VTE in ICU
- Diagnostic considerations to suspected Acute Pulmonary Embolism in the ICU
- Treatment of Acute Pulmonary Embolism in the ICU
- Prognosis
- Prevention

Introduction

Embolus:

Is an intravascular mass (solid, liquid or gaseous) removed from its origin & carried in the blood stream to be lodged in the pulmonary arteries and arterioles.

- Pulmonary Embolus (PE):
 - Thrombotic (detached thrombus fragment)
 -Septic embolism
 - Non-thrombotic
 - Air embolism
 - Fat embolism
 - Amniotic fluid embolism
 - Tumor embolism
- VTE = venous thromboembolism is (PE plus DVT)

Frequency of pulmonary embolism in ICUs

- ICU patients: higher risk for both DVT & PE.
- PE occurs in up to 50% of patients with proximal DVT.
- About 79% of patients with PE have evidence of LL DVT.
- DVT in critically ill: vary from 22% to almost 80%, depending on patient characteristics
- The incidence of PE was poorly described, and systematic screening was not performed.
- The rate of symptomatic PE ranged from 0.7% to 6%.
- PM studies on ICU patients → 7 to 27% of autopsies have incidental PE in which 1 to 3% of these PE are cause of death.

Health care costs of VTE

- Inpatient DVT → + \$8000 / entire hospital bill
- Inpatient PE → + \$14,000 / entire hospital bill
- DVT+PE→ +~ \$28,000 per case

- Hidden costs: readmission, bleeding complications or recurrent VTE.
- VTE in ICU → increases 1 to 4 more days length of ICU stay
- Hence VTE in critical care patients can result in significant hospital costs.

Pathophysiology of Pulmonary Embolism

Risk factors for VTE in ICU

Virchow's Triad and Risk of Venous Thromboembolism in the Intensive Care Unit

	Hypercoagulability	Stasis	Vessel Injury
	Trypercoagulability	Stasis	шјагу
Major surgery	×	X	X
Trauma	×	×	X
Acute myocardial		×	
infarction			
Congestive		×	
heart failure			
Stroke		×	
Burns		×	
Sepsis	×	×	
Catheter	X	X	×

Risk factors for VTE in ICU

Intensive Care Unit Acquired Risk Factors		
ICU Acquired Risk Factors		
Immobilization		
Stroke		
Trauma		
Mechanical ventilation		
Invasive procedures/tests		
Central venous catheters		
Sepsis		
Heart failure		
Vasopressor use		
Cardiopulmonary failure		

PE in ICU: A Difficult Diagnosis

- Unable to complain of the usual symptoms of PE & physical examination findings are limited.
- Readily available alternate explanations for hypoxemia, pulmonary infiltrates, respiratory failure, and hemodynamic instability.
- Too hemodynamically unstable for transport to the diagnostic imaging suite.
- Impaired renal function due to critical illness precludes CTPA.
- D-dimer levels had false positive results.
- DVT may not be suspected in ICU patient until the patient manifest sign symptoms of PE.

Clinical presentation

- None of symptoms and signs of PE are specific.
- Dx:
 - Clinical findings +laboratory tests + imaging studies
- Suspicion should increase in the presence of:
 - Supporting symptoms and signs
 - Presence of risk factors

Symptoms	
Dyspnoea	80%
Chest pain (pleuritic)	52%
Chest pain (substernal)	12%
Cough	20%
Haemoptysis	11%
Syncope	19%
Signs	
Tachypnoea (≥20/min)	70%
Tachycardia (>100/min)	26%
Signs of DVT	15%
Fever (>38.5°C)	7%
Cyanosis	11%

Clinical presentation

- ICU signs of PE: Unexplained:
 - Hypoxemia and/or shock.
 - Hypotension or tachycardia
 - Increased physiologic dead space (end-tidal CO2)
 - Increased pulmonary artery pressure (in the absence of other causes).

Assessment of clinical probability

 Estimation of the clinical probability of PE according to scoring systems → a validated prediction rule

Wells Prediction Rule for Diagnosing Clinical Evaluation Table for Predicti Probability of PE	
Clinical characteristic	Score
DVT suspected	3
Alternative diagnose less likely than PE	3
Recent surgery or immobilization (within last 30 days)	1.5
Heart rate> 100 beats per minute	1.5
Previous PE or DVT	1.5
Hemoptysis	1
Cancer (treated within previous 6 months)	1

Clinical probability (2 levels)

PE unlikely	0-4
PE likely	>4

Assessment of clinical probability

Definition of Massive PE:

- Acute PE with sustained hypotension
 - (SBP <90 mm Hg for at least 15 minutes or requiring inotropic support, not due to a cause other than PE, such as arrhythmia, hypovolemia, sepsis, or left ventricular [LV] dysfunction),
 - Acute PE with Pulselessness, or persistent profound bradycardia (heart rate <40 bpm with signs or symptoms of shock).

Definition of Submassive PE

- Acute PE without systemic hypotension (systolic blood pressure >90 mm
 Hg)
- but with either RV dysfunction or myocardial necrosis.

Diagnostic Tests

- Imaging Studies
 - CXR
 - V/Q Scans (major renal dysfunction or anaphylaxis to intravenous contrast)
 - CTPA (CT- Pulmonary Angiography)
 - Pulmonary Angiography
 - Echocardiography
 - U/S on LL & pelvic vines
- Laboratory Analysis
 - D-Dimer
 - ABG's
 - ECG
 - Cardiac troponin

CT Pulmonary Angiography

- 1st line diagnostic test
- Look for filling defects in pulmonary arteries.
- SDCT or MDCT showing a thrombus up to the segmental level can be taken as adequate evidence of PE
- Attractive to clinicians because
 - It yields a Yes/No answer
 - Can demonstrate an alternate diagnosis
 - Is not affected by pulmonary disease
- SDCT sensitivity and specificity rates ~70%
 & ~ 90%
- MDCT sensitivity and specificity rates of 83%
 & 96%.

CT Pulmonary Angiography

- High clinical probability PE:
 - Positive SDCT or MDCT → confirms PE
 - Negative SDCT → further testing
 - Negative MDCT → No further testing
- Non-high clinical probability PE:
 - Negative MDCT → excludes PE
 - Negative SDCT + negative proximal US LL → excludes PE

D-dimer

- A degradation product of crosslinked fibrin.
- D-dimer levels are elevated in plasma in the presence of an acute clot (VTE & PE).
- Nonspecific, since it may be positive in patients with infection, cancer, trauma, pregnancy, liver diseases and other inflammatory states and thus cannot inform decisions about treatment
- Normal D- dimer level have a high negative predictive value (NPV) in excluding P.E→ Good negative test

D-dimer

- d-dimer testing is best considered together with clinical probability:
 - Negative ELISA-based d-dimer + low or moderate clinical pretest probability→ PE or DVT unlikely → no need for CTPA.
 - High clinical pretest probability → CTPA instead of d-dimer testing.

Echocardiography

- Useful in ICU→ early therapy →until stabilization & further definitive testing patient
- Findings:
 - RV enlargement or hypokinesis, especially free wall hypokinesis, with sparing of the apex (the McConnell sign)
 - Interventricular septal flattening and paradoxical motion toward the LV, resulting in a "D-shaped" LV in cross section
 - Tricuspid regurgitation & pulmonary HTN
 - Free-floating RV thrombus

Suspected non-high-risk PE (without shock or hypotension)

Suspected high-risk PE (with shock or hypotension)

PE: Risk stratification

PE-related early MORTALITY RISK		RISK MARKERS		Detential	
		CLINICAL (shock or hypotension)	RV dysfunction	Myocardial injury	Potential treatment implications
	GH 5%	+	(+) ^a	(+) ^a	Thrombolysis or embolectomy
NON HIGH	1-1		+	+	
	Inter mediate 3–15%	ate	+	-	Hospital admission
			-	+	
	Low <1%	_	- <u>1886</u>)	_	Early discharg or home treatme

Figure 4. Treatment of Acute Pulmonary Embolism.

Anticoagulation Therapy

When? as early as possible parenteral anticoagulants in

- High clinical suspicion for acute PE
- Intermediate clinical suspicion for acute PE if results >4 h.
- Low clinical suspicion for acute PE if results
 >24 h.

Which parenteral form?

- SC LMWH: Preferred in haemodynamically stable pts. with acute PE.
 - Advantages over UFH: greater bioavailability, more predictable dosing, SC delivery & a lower risk of heparininduced thrombocytopenia (HIT)

Anticoagulation Therapy

IV UFH:

- Preferred in hemodynamically unstable or renal failure (easy to monitor aPTT)
- Increased risk of bleeding, morbidly obese (?SC absorption), significant edema or thrombolysis required.
- aPTT checked Q6h until it is =1.5 to 2.5 X control
- Direct thrombin inhibitor (e.g., argatroban or lepirudin) for HIT

Dose?

- IV UFH: 80 units/kg bolus & start a drip at 18 units/kg/hr.
- Enoxaparin: 1 mg/kg/12h sc
- Fondaparinux: 7.5 mg/24h sc

 $(5mg \rightarrow < 50 kg \& 10mg \rightarrow > 100kg)$

- Tinzaparin: 175 IU/kg/24h sc
- Dalteparin: 100 IU/kg/12h sc

Anticoagulation Therapy

When to start oral anticoagulation?

- Warfarin (Merivan, Coumadin)
- Initiated on day 1 or 2
- Bridging with heparin for least 5 days or until INR therapeutic(2-3)for 24 hrs.
- Initiated at 5mg/d ~3mg/d Target INR 2-3.

Duration of treatment:

- 1st episode/reversible risk factor: least 3 months.
- Recurrent PE: 2 or more: Indefinite treatment.

New oral anticoagulation

Rivaroxaban: Specific, direct factor Xa inhibitor

Out patient treatment of APE

Thrombolytic therapy

When? Documented PE with

- Persistent hypotension(SBP<90mmHg) ONLY widely accepted indication.
- ??High risk considered on case by case basis:
 - Severe hypoxemia, Right ventricular dysfunction
 - Extensive embolic burden on CTPA
 - Free-floating right atrial or ventricular thrombus
 - Cardiopulmonary resuscitation

Which form & dose?

Streptokinase 250 000 IU as a loading dose over 30 min, followed by 100 000 IU/h over 12–24 h

Accelerated regimen: 1.5 million IU over 2 h

Urokinase 4400 IU/kg as a loading dose over 10 min, followed by 4400 IU/kg/h over 12–24 h

Accelerated regimen: 3 million IU over 2 h

rtPA 100 mg over 2 h

or 0.6 mg/kg over 15 min (maximum dose 50 mg)

Thrombolytic therapy

- Catheter-directed intrapulmonary arterial thrombolytic. X
- Stopping UFH during t-PA infusion &
- restarting it when aPTT is ≤80 sec after t-PA is complete.
- Significantly higher risk of bleeding compared to other therapies.

•

Inferior Vena Cava Filters

Indications:

- Absolute contraindication to anticoagulation.
- Complications developing during anticoagulation(e.g. severe internal bleeding).
- ?Recurrent embolism under adequate therapy

Outcome:

- Filters are effective in reducing the incidence of PE.
- They increase the subsequent incidence of DVT
- Do not increase overall survival

Embolectomy

Surgical pulmonary embolectomy Of

Percutaneous catheter embolectomy

Indications:

 Documented PE with hemodynamically instability when thrombolytic therapy is contraindicated or failed.

 Which modality chosen depends on institutional expertise.

Aspiration Port

Rotational Coil

Hemodynamic and respiratory support

Indications:

 In suspected or confirmed PE presenting with shock or hypotension.

Respiratory support:

Supplemental oxygen up to intubation and ventilation.

Hemodynamic support:

- In acute PE and hypotension(SBP<90mmHg)
- <u>IV fluids:</u>
 Caution with placing increased strain on RV, worsening RHF.
- Vasopressor support: No improvement on IV fluids.

Prevention of VTE in ICU

- No routine ultrasound screening for DVT
- Pharmacological thromboprophylaxis:
 - LMWH 4000 6000 Anti-Xa once daily
 - <u>or</u> Low Dose Heparin (LDUH) 5000 U SC Twice a Day (bleeding or high risk of major bleeding,
 - Graduated Compression Stockings (GCS)
 - or Intermittent pneumatic compression (IPS)
- Early ambulation
- Optimise fluids

Conclusions

- VTE Common disorder, All ICU patients are at risk of VTE.
- VTE is a major cause of morbidity and mortality in patients admitted to the ICU
- Suspected Acute PE demands prompt diagnostic testing, assessment of risk factors, clinical probability & a validated clinical prediction score.
- Management of PE in the critically ill patient can be exceedingly complex.
- Anticoagulation is appropriate for most patients with VTE.
- Placement of an inferior vena cava filter when there is contraindication or complications developing from anticoagulation.

Conclusions

•	Thrombolytic therapy, catheter or surgical embolectomy,
	and pharmacologic support with vasoactive agents may be
	indicated in massive PE.

Preventive efforts are crucial.

References

- Tapson VF. Acute pulmonary embolism. N Engl J Med 2008; 358: 1037
- Guyatt et al. Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians: Evidence-Based Clinical Practice Guidelines. CHEST 2012; 141(2)(Suppl):7S–47S
- Pastores S. Management of venous thromboembolism in the intensive care unit. Journal of Critical Care (2009) 24, 185–191.
- Torbicki et al. Guidelines on the diagnosis and management of acute pulmonary embolism. European Heart Journal (2008) 29, 2276–2315.
- Chan C & Shorr A. Venous Thromboembolic Disease in the Intensive Care Unit. Semin Respir Crit Care Med 2010;31:39–46

Thank you